کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
468540 | 698236 | 2012 | 9 صفحه PDF | دانلود رایگان |

Recently, the micropositioner has become an important developing target for achieving the requirements of precision machinery. The piezo-actuating device plays a very important role in this application area. In this paper, a model-free adaptive sliding-mode controller is proposed for a 3D piezo-actuating system because of the system’s hysteresis nonlinearity and time-varying characteristics. This control strategy employs the functional approximation technique to establish the unknown function for releasing the model based requirements of the sliding-mode control. The update laws for the coefficients of the Fourier series function parameters are derived from a Lyapunov function to guarantee the control system stability. To verify the effectiveness of the proposed controller, drilling process control using the designed controller is investigated in this paper.
Journal: Computers & Mathematics with Applications - Volume 64, Issue 5, September 2012, Pages 1226–1234