کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
469777 698353 2008 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
New comparison and oscillation theorems for second-order half-linear dynamic equations on time scales
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
New comparison and oscillation theorems for second-order half-linear dynamic equations on time scales
چکیده انگلیسی

Let TT be a time scale (i.e., a closed nonempty subset of RR) with supT=+∞supT=+∞. Consider the second-order half-linear dynamic equation (r(t)(xΔ(t))α)Δ+p(t)xα(σ(t))=0,(r(t)(xΔ(t))α)Δ+p(t)xα(σ(t))=0, where r(t)>0,p(t)r(t)>0,p(t) are continuous, ∫t0∞(r(t))−1αΔt=∞, αα is a quotient of odd positive integers. In particular, no explicit sign assumptions are made with respect to the coefficient p(t)p(t). We give conditions under which every positive solution of the equations is strictly increasing. For α=1α=1, T=RT=R, the result improves the original theorem [see: [Lynn Erbe, Oscillation theorems for second-order linear differential equation, Pacific J. Math. 35 (2) (1970) 337–343]]. As applications, we get two comparison theorems and an oscillation theorem for half-linear dynamic equations which improve and extend earlier results. Some examples are given to illustrate our theorems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 56, Issue 10, November 2008, Pages 2744–2756
نویسندگان
, , ,