کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
470186 698408 2006 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic behavior of solutions for a cooperation-diffusion model with a saturating interaction *
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Asymptotic behavior of solutions for a cooperation-diffusion model with a saturating interaction *
چکیده انگلیسی

This paper is concerned with a Lotka-Volterra cooperation-diffusion model with a saturating interaction term for one species. The goal of the paper is to investigate the asymptotic behavior of the time- dependent solution in relation to the corresponding steady-state solutions under homogeneous Neumann boundary condition. Some simple and easily verifiable conditions are given to the rate constants so that for every nontrivial nonnegative initial function the corresponding time-dependent solution converges to one of the nonnegative constant steady-state solutions as time tends to infinity. This convergence result leads to the existence and uniqueness of a positive (or nonnegative) steady-state solution and the global asymptotic stability of a given nonnegative constant steady-state solution. In terms of ecological dynamics, it also gives some coexistence, permanence and extinction results for the model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 52, Issues 3–4, August 2006, Pages 339-350