کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
470364 698456 2014 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes
چکیده انگلیسی

The discrete reliability of a finite element method is a key ingredient to prove optimal convergence of an adaptive mesh-refinement strategy and requires the interchange of a coarse triangulation and some arbitrary refinement of it. One approach for this is the careful design of an intermediate triangulation with one-level refinements and with the remaining difficulty to design some interpolation operator which maps a possibly nonconforming approximation into the finite element space based on the finer triangulation. This paper enfolds the second possibility of some novel discrete Helmholtz decomposition for the nonconforming Morley finite element method. This guarantees the optimality of a standard adaptive mesh-refining algorithm for the biharmonic equation. Numerical examples illustrate the crucial dependence of the bulk parameter and the surprisingly short pre-asymptotic range of the adaptive Morley finite element method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 68, Issue 12, Part B, December 2014, Pages 2167–2181
نویسندگان
, , ,