کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
470984 698582 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Trees with minimal Laplacian coefficients
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Trees with minimal Laplacian coefficients
چکیده انگلیسی

Let GG be a simple undirected graph with the characteristic polynomial of its Laplacian matrix L(G)L(G), P(G,μ)=∑k=0n(−1)kckμn−k. It is well known that for trees the Laplacian coefficient cn−2cn−2 is equal to the Wiener index of GG, while cn−3cn−3 is equal to the modified hyper-Wiener index of the graph. In this paper, we characterize nn-vertex trees with given matching number mm which simultaneously minimize all Laplacian coefficients. The extremal tree A(n,m)A(n,m) is a spur, obtained from the star graph Sn−m+1Sn−m+1 with n−m+1n−m+1 vertices by attaching a pendant edge to each of certain m−1m−1 non-central vertices of Sn−m+1Sn−m+1. In particular, A(n,m)A(n,m) minimizes the Wiener index, the modified hyper-Wiener index and the recently introduced Incidence energy of trees, defined as IE(G)=∑k=0nμk, where μkμk are the eigenvalues of signless Laplacian matrix Q(G)=D(G)+A(G)Q(G)=D(G)+A(G). We introduced a general ρρ transformation which decreases all Laplacian coefficients simultaneously. In conclusion, we illustrate on examples of Wiener index and Incidence energy that the opposite problem of simultaneously maximizing all Laplacian coefficients has no solution.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 59, Issue 8, April 2010, Pages 2776–2783
نویسندگان
,