کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
471063 | 698588 | 2010 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bifurcations of limit cycles for a quintic Hamiltonian system with a double cuspidal loop
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this work we consider the number of limit cycles that can bifurcate from periodic orbits located inside a double cuspidal loop of the quintic Hamiltonian vector field XH=y∂∂x−x3(x2−1)∂∂y under small perturbations of the form ε(α+βx2+γx4)y∂∂y, where 0<∣ε∣≪10<∣ε∣≪1 and α,β,γα,β,γ are real constants. Using Picard–Fuchs equations for related abelian integrals, asymptotic expansion of these integrals about critical level curves of HH, and some geometric properties of the curves defined by ratios of two especial integrals, we show that the least upper bound for the number of limit cycles appeared in this bifurcation is two.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 59, Issue 4, February 2010, Pages 1409–1418
Journal: Computers & Mathematics with Applications - Volume 59, Issue 4, February 2010, Pages 1409–1418
نویسندگان
Rasoul Asheghi, Hamid R.Z. Zangeneh,