کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
471551 | 698643 | 2006 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Global Convergence of a PCA Learning Algorithm with a Constant Learning Rate
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In most of existing principal components analysis (PCA) learning algorithms, the learning rates are required to approach zero as learning step increases. However, in many practical applications, due to computational round-off limitations and tracking requirements, constant learning rates must be used. This paper proposes a PCA learning algorithm with a constant learning rate. It will prove via DDT (Deterministic Discrete Time) method that this PCA learning algorithm is globally convergent. Simulations are carried out to illustrate the theory.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 52, Issues 10–11, November–December 2006, Pages 1425-1438
Journal: Computers & Mathematics with Applications - Volume 52, Issues 10–11, November–December 2006, Pages 1425-1438