کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
472733 698742 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unified approach to coefficient-based regularized regression
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Unified approach to coefficient-based regularized regression
چکیده انگلیسی

In this paper, we consider the coefficient-based regularized least-squares regression problem with the lqlq-regularizer (1≤q≤2)(1≤q≤2) and data dependent hypothesis spaces. Algorithms in data dependent hypothesis spaces perform well with the property of flexibility. We conduct a unified error analysis by a stepping stone technique. An empirical covering number technique is also employed in our study to improve sample error. Comparing with existing results, we make a few improvements: First, we obtain a significantly sharper learning rate that can be arbitrarily close to O(m−1)O(m−1) under reasonable conditions, which is regarded as the best learning rate in learning theory. Second, our results cover the case q=1q=1, which is novel. Finally, our results hold under very general conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 62, Issue 1, July 2011, Pages 506–515
نویسندگان
, ,