کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
473198 698780 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Maximum contrast analysis for nonnegative blind source separation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Maximum contrast analysis for nonnegative blind source separation
چکیده انگلیسی

In this paper, we propose a maximum contrast analysis (MCA) method for nonnegative blind source separation, where both the mixing matrix and the source signals are nonnegative. We first show that the contrast degree of the source signals is greater than that of the mixed signals. Motivated by this observation, we propose an MCA-based cost function. It is further shown that the separation matrix can be obtained by maximizing the proposed cost function. Then we derive an iterative determinant maximization algorithm for estimating the separation matrix. In the case of two sources, a closed-form solution exists and is derived. Unlike most existing blind source separation methods, the proposed MCA method needs neither the independence assumption, nor the sparseness requirement of the sources. The effectiveness of the new method is illustrated by experiments using X-ray images, remote sensing images, infrared spectral images, and real-world fluorescence microscopy images.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 62, Issue 11, December 2011, Pages 3997–4006
نویسندگان
, , ,