کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4739396 1358440 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cobalt behavior during natural and technogenic oxidative leaching of Co-containing pyrites (Letnee chalcopyrite deposit, Southern Urals)
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات زمین شناسی
پیش نمایش صفحه اول مقاله
Cobalt behavior during natural and technogenic oxidative leaching of Co-containing pyrites (Letnee chalcopyrite deposit, Southern Urals)
چکیده انگلیسی

Cobalt behavior during the oxidation of sulfide ores, unlike that during the oxidation of Co ores, is poorly known. Moreover, cobalt sulfates are rare in the world. Complex hydrous cobalt-containing and cobalt sulfates have been found in technogenic zones at the Letnee chalcopyrite deposit (Southern Urals). They have been identified at pit bottoms, in the ore stockpile, as well as directly on ore fragments and the evaporation barriers of underdump water puddles. The paper reports the first experimental data on the oxidative leaching of Co-containing sulfide ores in the laboratory. Also, parts of a thermodynamic model for Co behavior in oxidized zones are presented.Experiments have revealed an increase in acidity up to pH = 4.14, along with transport of sulfate sulfur and metals into solution. This suggests acid mine drainage during the development of the Letnee deposit. The published stability diagrams for hydrous Cu, Mg, Zn, Co, and Ni sulfates were analyzed and compared with mineralogical finds in a technogenic oxidized zone. This made it possible to explain the precipitation sequence of minerals from solutions during their concentration by evaporation. As salts of these elements are highly soluble, significant contents of toxic metals will inevitably remain in equilibrium solution, necessitating additional waste-water treatment (for example, creating sorption geochemical barriers). Therefore, the paper describes regularities in Co behavior during its sorption on solid phases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Russian Geology and Geophysics - Volume 51, Issue 2, February 2010, Pages 176-185