کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4742473 | 1641570 | 2009 | 7 صفحه PDF | دانلود رایگان |

Rheology of the lower mantle characterizes the dynamics of the earth's interior and it is often controlled by the textures of the constituting material which are (Mg,Fe)SiO3 perovskite and ferro-periclase aggregate. We conducted high-pressure experiments to synthesize the (Mg,Fe)SiO3 perovskite and ferro-periclase aggregates and measured two important textures of “grain size” and “dihedral angle”. The grain growth rates of perovskite and (ferro-)periclase in two phase aggregates were influenced by the iron content and increased with factors of ∼1.5 in iron-rich system. This difference in grain growth rates indicates that the viscosity of aggregates of iron-rich system is only a few times greater than that of iron-poor system for likely diffusion creep in the lower mantle. In contrast, the change of the dihedral angle of perovskite – periclase – perovskite at triple grain junction with variation of iron content was not observed systematically, but the dihedral angle decreases from ∼110° to ∼105° with an increase of temperature from 1673 to 2273 K. The dihedral angle of 105–110° would imply the interconnected network spatially of ferro-periclase in the aggregates and the connectivity increases with temperature. As a result, at higher temperature, ferro-periclase plays more important role for understanding the rheology of the lower mantle because ferro-periclase is a few order of magnitude softer than (Mg,Fe)SiO3 perovskite.
Journal: Physics of the Earth and Planetary Interiors - Volume 174, Issues 1–4, May 2009, Pages 138–144