کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4753209 1416548 2017 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Continuous volatile fatty acid production from lignocellulosic biomass by a novel rumen-mimetic bioprocess
ترجمه فارسی عنوان
تولید اسید چرب فرار پایدار از زیست توده لیگنوسلولوزی توسط پروتئین زیستی رسیده
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
چکیده انگلیسی

Lignocellulosic biomass is an attractive source of biofuels and biochemicals, being abundant in various plant sources. However, processing this type of biomass requires hydrolysis of cellulose. The proposed rumen-mimetic bioprocess consists of dry-pulverization of lignocellulosic biomass and pH-controlled continuous cultivation of ruminal bacteria using ammonium as a nitrogen source. In this study, ruminal bacteria were continuously cultivated for over 60 days and used to digest microcrystalline cellulose, rice straw, and Japanese cedar to produce volatile fatty acids (VFAs). The ruminal bacteria grew well in the chemically defined medium. The amounts of VFAs produced from 20 g of cellulose, rice straw, and Japanese cedar were 183 ± 29.7, 69.6 ± 12.2, and 21.8 ± 12.9 mmol, respectively. Each digestion completed within 24 h. The carbon yield was 60.6% when 180 mmol of VFAs was produced from 20 g of cellulose. During the cultivation, the bacteria were observed to form flocs that enfolded the feed particles. These flocs likely contain all of the bacterial species necessary to convert lignocellulosic biomass to VFAs and microbial protein symbiotically. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rDNA fragments revealed that the bacterial community was relatively stable after 1 week in cultivation, though it was different from the original community structure. Furthermore, sequence analysis of the DGGE bands indicates that the microbial community includes a cellulolytic bacterium, a bacterium acting synergistically with cellulolytic bacteria, and a propionate-producing bacterium, as well as other anaerobic bacteria.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Bioscience and Bioengineering - Volume 124, Issue 5, November 2017, Pages 528-533
نویسندگان
, , ,