کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
485 | 45 | 2012 | 9 صفحه PDF | دانلود رایگان |

Localized controlled release of anti-fibrogenic factors can potentially prevent tissue fibrosis surrounding biomedical prostheses, such as vascular stents and breast implants. We have previously demonstrated that therapeutic intervention with topically applied stratifin in a rabbit ear fibrotic model not only prevents dermal fibrosis but also promotes more normal tissue repair by regulating extracellular matrix deposition. In this work, the anti-fibrogenic effect of a controlled release form of stratifin was investigated in the prevention of fibrosis induced by dermal poly(lactic-co-glycolic acid) (PLGA) microsphere/poly(vinyl alcohol) (PVA) hydrogel implants. Pharmacodynamic effects were evaluated by histopathological examination of subcutaneous tissue surrounding implanted composites. Controlled release of stratifin from PLGA microsphere/PVA hydrogel implants significantly moderated dermal fibrosis and inflammation by reducing collagen deposition (30%), total tissue cellularity (48%) and infiltrated CD3+ immune cells (81%) in the surrounding tissue compared with the stratifin-free implants. The controlled release of stratifin from implants markedly increased the level of matrix metalloproteinase-1 expression in the surrounding tissue, which resulted in less collagen deposition. These stratifin-eluting PLGA/PVA composites show promise as coatings to decrease the typical fibrosis exhibited around implanted biomedical prostheses, such as breast implants and vascular stents.
Journal: Acta Biomaterialia - Volume 8, Issue 10, October 2012, Pages 3660–3668