کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4913546 1428771 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Feasibility study on the use of high volume palm oil clinker waste in environmental friendly lightweight concrete
ترجمه فارسی عنوان
امکان سنجی استفاده از ضایعات کلینکر روغن نخل در بتن سبک وزن سبک زیست محیطی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
چکیده انگلیسی
Huge amount of virgin materials is being used in the production of concrete and the negative impact caused by exploitation of natural resources to our eco-system is beyond recovery. In order to produce a cleaner and greener concrete, waste palm oil clinker (POC) powder, a by-product from palm oil industry was used as filler and amorphous material in the development of sustainable and environmental friendly lightweight concrete. The utilization of POC powder as cement replacement in concrete will certainly have positive impact on the environment due to potential reduction in greenhouse gas emission. Further, whole replacement of virgin crushed granite coarse aggregate with coarser POC as coarse aggregate would enable conservation of natural resources. The properties including workability, density, compressive strength in different moisture contents, splitting tensile and flexural strengths, stress-strain curve, modulus of elasticity, ultrasonic pulse velocity (UPV) water absorption and sorptivity of the sustainable lightweight concrete were obtained and analysed. It has been found that the addition of 15% waste POC powder produced the optimum mixture as the strength enhancement of compressive and flexural strengths of 30% and 15%, respectively, was found. In addition, the filler effect of waste POC powder could be seen as it decreased the water absorption and sorptivity. Moreover, the use of two palm oil industrial waste materials up to a volume of 56% in concrete as replacement to cement and coarse aggregate will not only reduce cost but it will spur research and commercial interests as environmental friendly high strength lightweight concrete could be produced using these wastes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Construction and Building Materials - Volume 135, 15 March 2017, Pages 94-103
نویسندگان
, , , , , ,