کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4919491 1428957 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Comparative study of surrogate models for uncertainty quantification of building energy model: Gaussian Process Emulator vs. Polynomial Chaos Expansion
ترجمه فارسی عنوان
بررسی مقایسه ای مدل های جایگزین برای اندازه گیری عدم قطعیت مدل انرژی ساختمان: شبیه سازی فرآیند گاوسی در مقایسه با گسترش هرج و مرج چندجملهای
کلمات کلیدی
عدم قطعیت اندازه گیری، شبیه سازی مونت کارلو، شبیه ساز فرآیند گاوسی، گسترش هرج و مرج چندجملهای، شبیه سازی ساختمان،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Uncertainty Quantification (UQ) employing a Monte Carlo Sampling (MCS) method in a building simulation domain has been widely used to account for risks of predicted outputs for robust decision making. However, the stochastic approach for UQ problems requires significant computational burdens compared to the deterministic approach. This paper addresses two surrogate models (Gaussian Process Emulator (GPE) and Polynomial Chaos Expansion (PCE)) which together can be regarded as a meta-model of a Building Performance Simulation (BPS) tool with a high-fidelity model. In the paper, the developed GPE and PCE with different model structures were compared in terms of a prediction capability under different amount of training data and number of inputs. The aim of the comparative study is to identify the relative prediction abilities and model flexibility of GPE and PCE. It was found that the GPE and PCE produce high performance qualities having fast computation speed compared to the developed basis model if new inputs having identical inputs and probability ranges were used. In terms of two-sample Kolmogorov-Smirnov (K-S) hypothesis test, mean values of the minimum p-values of the GPE and PCE were 0.999 and 0.569, respectively, if the number of samplings are over 30 cases. Otherwise, the PCE shows significantly reduced performance quality than the GPE.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy and Buildings - Volume 133, 1 December 2016, Pages 46-58
نویسندگان
,