کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
493670 722819 2015 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A genetic algorithm for unconstrained multi-objective optimization
ترجمه فارسی عنوان
الگوریتم ژنتیک برای بهینه سازی چند هدفه بدون محدودیت
کلمات کلیدی
الگوریتم ژنتیک، روش توالی مطلوب، بهینه سازی چند هدفه، ارزیابی عملکرد عددی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

In this paper, we propose a genetic algorithm for unconstrained multi-objective optimization. Multi-objective genetic algorithm (MOGA) is a direct method for multi-objective optimization problems. Compared to the traditional multi-objective optimization method whose aim is to find a single Pareto solution, MOGA tends to find a representation of the whole Pareto frontier. During the process of solving multi-objective optimization problems using genetic algorithm, one needs to synthetically consider the fitness, diversity and elitism of solutions. In this paper, more specifically, the optimal sequence method is altered to evaluate the fitness; cell-based density and Pareto-based ranking are combined to achieve diversity; and the elitism of solutions is maintained by greedy selection. To compare the proposed method with others, a numerical performance evaluation system is developed. We test the proposed method by some well known multi-objective benchmarks and compare its results with other MOGASs׳; the result show that the proposed method is robust and efficient.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Swarm and Evolutionary Computation - Volume 22, June 2015, Pages 1–14
نویسندگان
, , , ,