کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4943224 | 1437617 | 2017 | 33 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
IFS-IBA similarity measure in machine learning algorithms
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The purpose of this paper is to introduce a novel similarity measure of intuitionistic fuzzy sets (IFSs). The proposed measure is based on the equivalence relation in the IFS-IBA approach. Due to the logic-based background, this measure compares IFS from a different viewpoint than the standard measures, emphasizing comprehension of intuitionism. The IFS-IBA similarity measure has a solid mathematical background and can be combined with various IF aggregation operators. Additionally, we define IFS-IBA distance function as a complement of IFS-IBA similarity. Both IFS-IBA similarity and distance functions may have different realizations that are easy to interpret. Hence, the measures are offering great descriptive power and the ability to model various problems. The benefits of the proposed measure are illustrated on the problem of pattern recognition and classification within k-NN algorithm. Finally, we show that the proposed measure is appropriate for IF hierarchical clustering on the problem of clustering Serbian medium-sized companies according to their financial ratios. Results obtained using the IFS-IBA measure are clear-cut and more meaningful compared to a standard IF distances regardless of the I-fuzzification method used.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 89, 15 December 2017, Pages 296-305
Journal: Expert Systems with Applications - Volume 89, 15 December 2017, Pages 296-305
نویسندگان
Pavle MiloÅ¡eviÄ, Bratislav PetroviÄ, Veljko JeremiÄ,