کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4944142 1437979 2018 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An optimal mutation execution strategy for cost reduction of mutation-based fault localization
ترجمه فارسی عنوان
استراتژی اجرایی جهش مطلوب برای کاهش هزینه محلی سازی گسل مبتنی بر جهش
کلمات کلیدی
اشکالزدایی نرم افزار، محلی سازی گسل مبتنی بر جهش، کاهش هزینه های جهش، استراتژی اجرای جهش دینامیکی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Identifying faulty program entities has been recognized as one of the most expensive, tedious and time-consuming processes in software debugging activity. Fault localization techniques are designed to assist developers in locating faults by giving a ranking of the probability that program entities incur failures. Mutation-based fault localization (MBFL) is a recently proposed fault localization approach via mutation analysis, which uses the location of mutants to identify the faulty statements. With improved effectiveness, the MBFL also brings huge execution cost. To reduce the execution cost of MBFL technique, this paper proposes a dynamic mutation execution strategy (DMES) to prioritize the execution on both mutants and test cases. As fewer mutants and test cases are executed with DMES, the whole process will become faster and the cost will be decreased. At the same time, it is proved that the fault localization accuracy of MBFL with DMES is the same as that of the original MBFL. Furthermore, this paper discusses the lowest mutation execution cost of MBFL in theory and gives a quick solution to compute the theoretical minimal mutation execution cost of MBFL in the case of keeping fault localization accuracy non-decreasing. The empirical studies show that MBFL with the dynamic strategy proposed in this paper can reduce mutant-test execution cost by 32.4-87% and is close to the theoretical optimal cost. Furthermore, the additional run time required by utilizing our strategy is minimum and can be ignored.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 422, January 2018, Pages 572-596
نویسندگان
, , , ,