کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4944375 | 1437988 | 2017 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
RecTime: Real-Time recommender system for online broadcasting
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Recommender systems for online broadcasting become important as the number of channels has been increasing. In online broadcasting, to provide accurate recommendation, recommender systems should take time factors as well as users' condition into account, but the conventional systems don't. This paper proposes a real-time recommender system for online broadcasting called RecTime which considers time factors and preferences simultaneously. Specifically, RecTime employs a 4-d tensor factorization, which considers two more dimensions regarding the time factors, while typical collaboriative filtering methods only consider two dimensions, users and items. By factorizing the 4-d tensor, the system naturally identifies the recommendation time and the items at the same time. In our experiments on real-world data, RecTime properly models users' watching patterns and significantly outperforms previous methods in terms of the accuracy on the recommendation time as well as the items.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volumes 409â410, October 2017, Pages 1-16
Journal: Information Sciences - Volumes 409â410, October 2017, Pages 1-16
نویسندگان
Yoojin Park, Jinoh Oh, Hwanjo Yu,