کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4944473 | 1437991 | 2017 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Link sign prediction by Variational Bayesian Probabilistic Matrix Factorization with Student-t Prior
ترجمه فارسی عنوان
پیش بینی نشانه پیوند با فاکتوروری ماتریسی احتمال احتمالی بیزی با پیش آزمون دانشجویان
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
شبکه های امضا شده تقسیم ماتریس، توزیع دانشجویی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
In signed social networks, link sign prediction refers to using the observed link signs to infer the signs of the remaining links, which is important for mining and analyzing the evolution of social networks. The widely used matrix factorization-based approach - Bayesian Probabilistic Matrix Factorization (BMF), assumes that the noise between the real and predicted entry is Gaussian noise, and the prior of latent features is multivariate Gaussian distribution. However, Gaussian noise model is sensitive to outliers and is not robust. Gaussian prior model neglects the differences between latent features, that is, it does not distinguish between important and non-important features. Thus, Gaussian assumption based models perform poorly on real-world (sparse) datasets. To address these issues, a novel Variational Bayesian Probabilistic Matrix Factorization with Student-t prior model (TBMF) is proposed in this paper. A univariate Student-t distribution is used to fit the prediction noise, and a multivariate Student-t distribution is adopted for the prior of latent features. Due to the high kurtosis of Student-t distribution, TBMF can select informative latent features automatically, characterize long-tail cases and obtain reasonable representations on many real-world datasets. Experimental results show that TBMF improves the prediction performance significantly compared with the state-of-the-art algorithms, especially when the observed links are few.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 405, September 2017, Pages 175-189
Journal: Information Sciences - Volume 405, September 2017, Pages 175-189
نویسندگان
Yisen Wang, Fangbing Liu, Shu-Tao Xia, Jia Wu,