کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4944650 | 1438007 | 2017 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A clustering algorithm for stream data with LDA-based unsupervised localized dimension reduction
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We present an algorithm for clustering high dimensional streaming data. The algorithm incorporates dimension reduction into the stream clustering framework. When a new datum arrives, the algorithm performs dimension reduction to find a local projected subspace using unsupervised LDA (Linear Discriminant Analysis)-based method. The obtained local subspace would maximally separate the nearby micro-clusters with respect to the incoming point. Then, the incoming point is assigned to a micro-cluster in the projected space, rather than in the full dimensional space. The experimental results show that the proposed algorithm outperforms its counterpart streaming clustering algorithms. Moreover, when compared with traditional clustering algorithms which require the whole data set, the proposed algorithms shows comparable clustering performances with much less computation time for large data sets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 381, March 2017, Pages 104-123
Journal: Information Sciences - Volume 381, March 2017, Pages 104-123
نویسندگان
Sirisup Laohakiat, Suphakant Phimoltares, Chidchanok Lursinsap,