کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4944781 | 1438016 | 2016 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
High dimensional data regression using Lasso model and neural networks with random weights
ترجمه فارسی عنوان
رگرسیون داده های با ابعاد بزرگ با استفاده از مدل لسو و شبکه های عصبی با وزن های تصادفی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
This paper aims to develop a framework for high dimensional data regression, where the model interpretation and prediction accuracy are regularized. Taking application background into account, we supposed that the collected samples for building learner models are expensive and limited. Our technical contributions include the generation of ensemble features (EF) using Lasso models with some selective regularizing factors estimated via a cross-validation procedure; and predictive model building using neural networks with random weights, where the weights and biases of the hidden nodes are assigned randomly in a specific interval, and the output weights are evaluated analytically by a regularized least square method. Experiments with comparisons on estimating protein content of milk from its NMR spectrum are carried out by a data set with 31,570 dimensions (spectrum size) and 120 samples. Results demonstrate that our proposed solution for data regression problems with small samples and high dimensionality is promising, and the learning system performs robustly with respect to a key parameter setting in the ensemble feature generation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 372, 1 December 2016, Pages 505-517
Journal: Information Sciences - Volume 372, 1 December 2016, Pages 505-517
نویسندگان
Caihao Cui, Dianhui Wang,