کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4944821 | 1438009 | 2017 | 37 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Enumerating all maximal biclusters in numerical datasets
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Biclustering has proved to be a powerful data analysis technique due to its wide success in various application domains. However, the existing literature presents efficient solutions only for enumerating maximal biclusters with constant values, or heuristic-based approaches which cannot find all biclusters or even support the maximality of the obtained biclusters. Here, we present a general family of biclustering algorithms for enumerating all maximal biclusters with (i) constant values on rows, (ii) constant values on columns, or (iii) coherent values. Versions for perfect and for perturbed biclusters are provided. Our algorithms have four key properties (only the algorithm for perturbed biclusters with coherent values fails to exhibit the first property): they are (1) efficient (take polynomial time per pattern), (2) complete (find all maximal biclusters), (3) correct (all biclusters attend the user-defined measure of similarity), and (4) non-redundant (all the obtained biclusters are maximal and the same bicluster is not enumerated twice). They are based on a generalization of an efficient formal concept analysis algorithm called In-Close2. Experimental results point to the necessity of having efficient enumerative biclustering algorithms and provide a valuable insight into the scalability of our family of algorithms and its sensitivity to user-defined parameters.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 379, 10 February 2017, Pages 288-309
Journal: Information Sciences - Volume 379, 10 February 2017, Pages 288-309
نویسندگان
Rosana Veroneze, Arindam Banerjee, Fernando J. Von Zuben,