کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4944859 | 1438010 | 2017 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
DiABlO: Optimization based design for improving diversity in recommender system
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Primary task of a recommender system is to improve user's experience by recommending relevant and interesting items to the users. To this effect, diversity in item suggestion is as important as the accuracy of recommendations. Existing literature aimed at improving diversity primarily suggests a 2-stage mechanism - an existing CF scheme for rating prediction, followed by a modified ranking strategy. This approach requires heuristic selection of parameters and ranking strategies. Also most works focus on diversity from either the user or system's perspective. In this work, we propose a single stage optimization based solution to achieve high diversity while maintaining requisite levels of accuracy. We propose to incorporate additional diversity enhancing constraints, in the matrix factorization model for collaborative filtering. However, unlike traditional MF scheme generating dense user and item latent factor matrices, our base MF model recovers a dense user and a sparse item latent factor matrix; based on a recent work. The idea is motivated by the fact that although a user will demonstrate some affinity towards all latent factors, an item will never possess all features; thereby yielding a sparse structure. We also propose an algorithm for our formulation. The superiority of our model over existing state of the art techniques is demonstrated by the results of experiments conducted on real world movie database.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 378, 1 February 2017, Pages 59-74
Journal: Information Sciences - Volume 378, 1 February 2017, Pages 59-74
نویسندگان
Anupriya Gogna, Angshul Majumdar,