کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4944910 | 1438015 | 2016 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Parallel attribute reduction in dominance-based neighborhood rough set
ترجمه فارسی عنوان
کاهش ضریب همبستگی در مجموعه محدوده سلطه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
الگوریتم موازی، مجموعه های خشن، اطلاعات بزرگ، کاهش مشخصه،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
The amount of data collected from different real-world applications is increasing rapidly. When the volume of data is too large to be loaded to memory, it may be impossible to analyze it using a single computer. Although efforts have been taken to manage big data by using a single computer, the problem may not be solved in an acceptable time frame, making parallel computing an indispensable way to handle big data. In this paper, we investigate approaches to attribute reduction in parallel using dominance-based neighborhood rough sets (DNRS), which take into consideration the partial orders among numerical and categorical attribute values, and can be utilized in a multicriteria decision-making method. We first present some properties of attribute reduction in DNRS, and then investigate principles of parallel attribute reduction in DNRS. Parallelization on different components of attribute reduction are explored in detail. Furthermore, parallel attribute reduction algorithms in DNRS are proposed. Experimental results on UCI data and big data show that the proposed parallel algorithm is both effective and efficient.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 373, 10 December 2016, Pages 351-368
Journal: Information Sciences - Volume 373, 10 December 2016, Pages 351-368
نویسندگان
Hongmei Chen, Tianrui Li, Yong Cai, Chuan Luo, Hamido Fujita,