کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4944934 | 1438014 | 2016 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Improving top-K recommendation with truster and trustee relationship in user trust network
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Due to the data sparsity problem, social network information is often additionally used to improve the performance of recommender systems. While most existing works exploit social information to reduce the rating prediction error, e.g., RMSE, a few had aimed to improve the top-k ranking prediction accuracy. This paper proposes a novel top-k ranking oriented recommendation method, TRecSo, which incorporates social information into recommendation by modeling two different roles of users as trusters and trustees while considering the structural information of the network. Empirical studies on real-world datasets demonstrate that TRecSo leads to a remarkable improvement compared with previous methods in top-k recommendation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 374, 20 December 2016, Pages 100-114
Journal: Information Sciences - Volume 374, 20 December 2016, Pages 100-114
نویسندگان
Chanyoung Park, Donghyun Kim, Jinoh Oh, Hwanjo Yu,