کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4945011 | 1438018 | 2016 | 35 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
PerSaDoR: Personalized social document representation for improving web search
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we discuss a contribution towards the integration of social information in the index structure of an IR system. Since each user has his/her own understanding and point of view of a given document, we propose an approach in which the index model provides a Personalized Social Document Representation (PerSaDoR) of each document per user based on his/her activities in a social tagging system. The proposed approach relies on matrix factorization to compute the PerSaDoR of documents that match a query, at query time. The complexity analysis shows that our approach scales linearly with the number of documents that match the query, and thus, it can scale to very large datasets. PerSaDoR has been also intensively evaluated by an offline study and by a user survey operated on a large public dataset from delicious
showing significant benefits for personalized search compared to state of the art methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 369, 10 November 2016, Pages 614-633
Journal: Information Sciences - Volume 369, 10 November 2016, Pages 614-633
نویسندگان
Mohamed Reda Bouadjenek, Hakim Hacid, Mokrane Bouzeghoub, Athena Vakali,