کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4945911 1439192 2017 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A probabilistic algorithm for computing data-discriminants of likelihood equations
ترجمه فارسی عنوان
یک الگوریتم احتمالاتی برای محاسبه معادلات احتمال معادلات عددی اطلاعات؟
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

An algebraic approach to the maximum likelihood estimation problem is to solve a very structured parameterized polynomial system called likelihood equations that have finitely many complex (real or non-real) solutions. The only solutions that are statistically meaningful are the real solutions with positive coordinates. In order to classify the parameters (data) according to the number of real/positive solutions, we study how to efficiently compute the discriminants, say data-discriminants (DD), of the likelihood equations. We develop a probabilistic algorithm with three different strategies for computing DDs. Our implemented probabilistic algorithm based on Maple and FGb is more efficient than our previous version (Rodriguez and Tang, 2015) and is also more efficient than the standard elimination for larger benchmarks. By applying RAGlib to a DD we compute, we give the real root classification of 3 by 3 symmetric matrix model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Symbolic Computation - Volume 83, November–December 2017, Pages 342–364