کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4945948 | 1439195 | 2017 | 49 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Summation Theory II: Characterizations of RΠΣâ-extensions and algorithmic aspects
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Recently, RΠΣâ-extensions have been introduced which extend Karr's ΠΣâ-fields substantially: one can represent expressions not only in terms of transcendental sums and products, but one can work also with products over primitive roots of unity. Since one can solve the parameterized telescoping problem in such rings, covering as special cases the summation paradigms of telescoping and creative telescoping, one obtains a rather flexible toolbox for symbolic summation. This article is the continuation of this work. Inspired by Singer's Galois theory of difference equations we will work out several alternative characterizations of RΠΣâ-extensions: adjoining naively sums and products leads to an RΠΣâ-extension iff the obtained difference ring is simple iff the ring can be embedded into the ring of sequences iff the ring can be given by the interlacing of ΠΣâ-extensions. From the viewpoint of applications this leads to a fully automatic machinery to represent indefinite nested sums and products in such RΠΣâ-rings. In addition, we work out how the parameterized telescoping paradigm can be used to prove algebraic independence of indefinite nested sums. Furthermore, one obtains an alternative reduction tactic to solve the parameterized telescoping problem in basic RΠΣâ-extensions exploiting the interlacing property.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Symbolic Computation - Volume 80, Part 3, MayâJune 2017, Pages 616-664
Journal: Journal of Symbolic Computation - Volume 80, Part 3, MayâJune 2017, Pages 616-664
نویسندگان
Carsten Schneider,