کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4947123 | 1439566 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Parallel multi-graph classification using extreme learning machine and MapReduce
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A multi-graph is represented by a bag of graphs and modeled as a generalization of a multi-instance. Multi-graph classification is a supervised learning problem, which has a wide range of applications, such as scientific publication categorization, bio-pharmaceutical activity tests and online product recommendation. However, existing algorithms are limited to process small datasets due to high computation complexity of multi-graph classification. Specially, the precision is not high enough for a large dataset. In this paper, we propose a scalable and high-precision parallel algorithm to handle the multi-graph classification problem on massive datasets using MapReduce and extreme learning machine. Extensive experiments on real-world and synthetic graph datasets show that the proposed algorithm is effective and efficient.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 261, 25 October 2017, Pages 171-183
Journal: Neurocomputing - Volume 261, 25 October 2017, Pages 171-183
نویسندگان
Jun Pang, Yu Gu, Jia Xu, Xiaowang Kong, Ge Yu,