کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4948457 | 1439613 | 2016 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Two-phase multi-kernel LP-SVR for feature sparsification and forecasting
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Forecasting by regression is a very important method for the prediction of continuous values. Generally, in order to increase the predictive accuracy and reliability, as many factors or features as possible are considered and added to the regression model, however, this leads to the poor efficiency, accuracy, and interpretability. Besides, some existing methods associated with support vector regression (SVR) usually require us to solve the convex quadratic programming problem with a higher computational complexity. In this paper, we proposed a novel two-phase multi-kernel SVR using linear programming method (MK-LP-SVR) for feature sparsification and forecasting so as to solve the aforementioned problems. The multi-kernel learning method is mainly utilized to carry out feature sparsification and find the important features by computing their contribution to forecasting while the whole model can be used to predict output values for given inputs. Based on a simulation, 6 small, and 6 big data sets, the experimental results and comparison with SVR, linear programming SVR (LP-SVR), least squares SVR (LS-SVR), and multiple kernel learning SVR (MKL-SVR) showed that our proposed model has considerably improved predictive accuracy and interpretability for the regression forecasting on the independent test sets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 214, 19 November 2016, Pages 594-606
Journal: Neurocomputing - Volume 214, 19 November 2016, Pages 594-606
نویسندگان
Zhiwang Zhang, Guangxia Gao, Yingjie Tian, Jue Yue,