کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
49616 | 46756 | 2014 | 5 صفحه PDF | دانلود رایگان |

• The dispersion of CeO2 on γ-Al2O3 is affected by the concentration of HAc aqueous.
• The Cu/Ce/Al(20-1) has the highest activity in the NO + CO reaction.
• The size of the CeO2 nanoparticles plays a key role in the activity of Cu/Ce/Al.
Acetic acid (HAc) aqueous was used as solvent in wetness impregnation to prepare CeO2-modified γ-Al2O3 support. With the help of HAc, the dispersion of CeO2 on γ-Al2O3 is significantly improved and the size of CeO2 nanoparticles can be controlled through tuning the concentration of HAc aqueous. XPS analysis shows that the percentages of Ce3 + in CeO2 nanoparticles will vary with the size. Then we load CuO on the as-prepared CeO2-modified γ-Al2O3 support and choose NO reduction with CO as a probe reaction to investigate the influences of impregnation solvent on the catalytic properties. The results demonstrate that the CuO/CeO2/γ-Al2O3 prepared in the solvent with volume ratio of 20:1 (H2O:HAc) has the highest activity in NO + CO reaction. Combing the structural characterizations and catalytic performances, we think that the size of the CeO2 nanoparticles should be a key factor that affects the activities of CuO/CeO2/γ-Al2O3. Furthermore, CuO dispersed on CeO2 nanoparticles with an average size of ca. 5 nm should be the highest active sites for NO + CO reaction.
Journal: Catalysis Communications - Volume 51, 5 June 2014, Pages 95–99