کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4963988 | 1447417 | 2017 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Divide and conquer: An incremental sparsity promoting compressive sampling approach for polynomial chaos expansions
ترجمه فارسی عنوان
تقسیم و تسخیر: یک اسپانسر افزایشی از روش نمونه گیری فشرده برای گسترش هرج و مرج چندجملهای
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
This paper introduces an efficient sparse recovery approach for Polynomial Chaos (PC) expansions, which promotes the sparsity by breaking the dimensionality of the problem. The proposed algorithm incrementally explores sub-dimensional expansions for a sparser recovery, and shows success when removal of uninfluential parameters that results in a lower coherence for measurement matrix, allows for a higher order and/or sparser expansion to be recovered. The incremental algorithm effectively searches for the sparsest PC approximation, and not only can it decrease the prediction error, but it can also reduce the dimensionality of PCE model. Four numerical examples are provided to demonstrate the validity of the proposed approach. The results from these examples show that the incremental algorithm substantially outperforms conventional compressive sampling approaches for PCE, in terms of both solution sparsity and prediction error.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 318, 1 May 2017, Pages 937-956
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 318, 1 May 2017, Pages 937-956
نویسندگان
Negin Alemazkoor, Hadi Meidani,