کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4968895 1449751 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Combining multiple expert annotations using semi-supervised learning and graph cuts for medical image segmentation
ترجمه فارسی عنوان
ترکیب چندین حاشیه نویسی متخصص با استفاده از یادگیری نیمه نظارتی و برش گراف برای تقسیم تصویر پزشکی
کلمات کلیدی
کارشناسان چندگانه، تقسیم بندی، بیماری کرون، شبکیه چشم، خود سازگاری، نیمه تحت نظارت یادگیری، کاهش نمودار،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Generating consensus ground truth segmentation from multiple experts is important in medical imaging applications such as segmentation. We propose a novel approach to combine multiple expert annotations using graph cuts (GC) and semi supervised learning (SSL). Current methods use iterative Expectation-Maximization (EM) based approaches to estimate the final annotation and quantify annotator's performance. This poses the risk of getting trapped in local minimum and providing inaccurate estimates of annotator performance. A novel self consistency (SC) score quantifies annotator performance based on the consistency of their annotations in terms of low level image features. The missing annotations are predicted using SSL techniques that consider global features and local image consistency. The self consistency score also serves as the penalty cost in a second order Markov random field (MRF) cost function which is optimized using graph cuts to obtain the final consensus label. Graph cut optimization gives a global maximum and is non-iterative, thus speeding up the process. Experimental results on synthetic images, real data of Crohn's disease patients and retinal images show our final segmentation to be accurate and more consistent than those obtained by competing methods. It also highlights the effectiveness of self consistency in quantifying expert reliability and accuracy of SSL in predicting missing labels.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Vision and Image Understanding - Volume 151, October 2016, Pages 114-123
نویسندگان
,