کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4973769 | 1451710 | 2017 | 28 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A local entropy-based algorithm for information content extraction from time-frequency distributions of noisy signals
ترجمه فارسی عنوان
یک الگوریتم مبتنی بر آنتروپی محلی برای استخراج محتوای اطلاعات از توزیع فرکانس زمانی سیگنال های پر سر و صدا
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
In this paper, an automatic adaptive method for identification and separation of the useful information content, from the background noise of time-frequency distributions (TFD) of multicomponent nonstationary signals, is presented. The method is based on an initial segmentation of the TFD information content by the K-means clustering algorithm, that partitions the initial data set in order to obtain K classes containing elements with similar amplitudes. It is shown that the local Rényi entropy (LRE) can accurately distinguish classes containing noise from classes with the useful information content, as a consequence of their basic structural differences in the time-frequency plane. Simulations are run to compare the performance of the proposed adaptive algorithm for blind separation of useful information from background noise (i.e. blind amplitude threshold) and non-adaptive (hard) amplitude TFD threshold procedures. Simulation results indicate that the proposed method performs better or closely to the best of five blindly chosen hard thresholds. The limitation of efficient hard-thresholding is the need of previous knowledge of the signal's structure and SNR or visual evaluation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Digital Signal Processing - Volume 70, November 2017, Pages 155-165
Journal: Digital Signal Processing - Volume 70, November 2017, Pages 155-165
نویسندگان
Nicoletta Saulig, Željka MilanoviÄ, Cornel Ioana,