کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4978289 | 1452263 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Use of freely available datasets and machine learning methods in predicting deforestation
ترجمه فارسی عنوان
استفاده از مجموعه داده های آزاد و روش های یادگیری ماشین در پیش بینی جنگل زدایی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزار
چکیده انگلیسی
The range and quality of freely available geo-referenced datasets is increasing. We evaluate the usefulness of free datasets for deforestation prediction by comparing generalised linear models and generalised linear mixed models (GLMMs) with a variety of machine learning models (Bayesian networks, artificial neural networks and Gaussian processes) across two study regions. Freely available datasets were able to generate plausible risk maps of deforestation using all techniques for study zones in both Mexico and Madagascar. Artificial neural networks outperformed GLMMs in the Madagascan (average AUC 0.83 vs 0.80), but not the Mexican study zone (average AUC 0.81 vs 0.89). In Mexico and Madagascar, Gaussian processes (average AUC 0.89, 0.85) and structured Bayesian networks (average AUC 0.88, 0.82) performed at least as well as GLMMs (average AUC 0.89, 0.80). Bayesian networks produced more stable results across different sampling methods. Gaussian processes performed well (average AUC 0.85) with fewer predictor variables.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Modelling & Software - Volume 87, January 2017, Pages 17-28
Journal: Environmental Modelling & Software - Volume 87, January 2017, Pages 17-28
نویسندگان
Helen Mayfield, Carl Smith, Marcus Gallagher, Marc Hockings,