کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4991991 | 1457119 | 2017 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Anti-frosting performance of superhydrophobic surface with ZnO nanorods
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A superhydrophobic (SHP) surface is believed to be potential candidates for anti-icing/frosting applications. In this study, a SHP surface with ZnO nanorods was fabricated through radio frequency (RF) magneton sputtering method. The XRD pattern, surface morphology, wettability and chemical composition were characterized by corresponding methods. The anti-frosting property and mechanism of frost propagation on surfaces exhibiting various degrees of wettability were investigated on a Peltier-based platform. Compared with the bare glass surface and a permanent-room-temperature-vulcanized silicon rubber-coated glass surface, the as-prepared SHP ZnO surface displays excellent anti-frosting property. Frost formation on the as-prepared SHP ZnO surface was delayed for 140 min at â10 °C. A large gap free of condensed water droplets formed on the as-prepared SHP ZnO surface because of the self-propelled movement and absorption of condensed water droplets by the frost front. As a consequence, the frost propagation rate is effectively reduced. Moreover, after 30 cycles of frosting/defrosting process, no evident degradation of the as-prepared SHP ZnO surfaces was observed, indicating fair durability against repetitive frosting/defrosting process. Our study provides insights into the mechanism of anti-frosting property of nanostructured SHP surfaces and proposes a potential method to fabricate an anti-frosting surface.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Thermal Engineering - Volume 110, 5 January 2017, Pages 39-48
Journal: Applied Thermal Engineering - Volume 110, 5 January 2017, Pages 39-48
نویسندگان
Zhiping Zuo, Ruijin Liao, Xuetong Zhao, Xiaoyu Song, Zhiwei Qiao, Chao Guo, Aoyun Zhuang, Yuan Yuan,