کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4992012 1457119 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical simulation of cooling performance of an exhaust gas recirculation (EGR) cooler using nano-fluids
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
Numerical simulation of cooling performance of an exhaust gas recirculation (EGR) cooler using nano-fluids
چکیده انگلیسی
A numerical model is developed to predict the performance of an exhaust gas recirculation (EGR) cooler using nanofluid as the coolant. The model accounts for turbulent flow of coolant and hot smokes on an integrated computational domain. Thermal and hydrodynamic behavior of four nanofluids comprising water as the base fluid and SiO2, TiO2, Al2O3 and Cu nanoparticles, were compared over a wide range of Reynolds numbers and various particle concentrations. The accuracy of predictions was verified by experimental data available in the literature. The Al2O3-water nanofluid was found to provide the greatest heat transfer enhancement. Quantitatively, Al2O3-water nanofluid with a volume fraction of 5% and Reynolds number of 5000 improves the heat transfer coefficient by about 16% compared to pure water. However, it was found that the heat transfer enhancement was achieved at the expense of increased pressure drop due to greater viscosity of nanofluids compared to the base fluid. It was also found that the effectiveness of nanofluids in improving the heat transfer rate decreases as the Reynolds number increase.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Thermal Engineering - Volume 110, 5 January 2017, Pages 244-252
نویسندگان
, , , ,