کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4998455 | 1460353 | 2017 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Efficient symmetric Hessian propagation for direct optimal control
ترجمه فارسی عنوان
انتشار هسیسی متقارن کارآمد برای کنترل مستقیم بهینه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
کنترل بهینه، تجزیه و تحلیل میزان حساسیت، الگوریتم ها و نرم افزار، کنترل پیش بینی غیر خطی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
تکنولوژی و شیمی فرآیندی
چکیده انگلیسی
Direct optimal control algorithms first discretize the continuous-time optimal control problem and then solve the resulting finite dimensional optimization problem. If Newton type optimization algorithms are used for solving the discretized problem, accurate first as well as second order sensitivity information needs to be computed. This article develops a novel approach for computing Hessian matrices which is tailored for optimal control. Algorithmic differentiation based schemes are proposed for both discrete- and continuous-time sensitivity propagation, including explicit as well as implicit systems of equations. The presented method exploits the symmetry of Hessian matrices, which typically results in a computational speedup of about factor 2 over standard differentiation techniques. These symmetric sensitivity equations additionally allow for a three-sweep propagation technique that can significantly reduce the memory requirements, by avoiding the need to store a trajectory of forward sensitivities. The performance of this symmetric sensitivity propagation is demonstrated for the benchmark case study of the economic optimal control of a nonlinear biochemical reactor, based on the open-source software implementation in the ACADO Toolkit.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Process Control - Volume 50, February 2017, Pages 19-28
Journal: Journal of Process Control - Volume 50, February 2017, Pages 19-28
نویسندگان
Rien Quirynen, Boris Houska, Moritz Diehl,