کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4999668 1460630 2017 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A data-driven approach to actuator and sensor fault detection, isolation and estimation in discrete-time linear systems
ترجمه فارسی عنوان
یک رویکرد مبتنی بر داده ها برای تشخیص، جداسازی و تخمین گسل سنسور و سنسور در سیستم های خطی گسسته
کلمات کلیدی
متدولوژی مبتنی بر داده ها، تشخیص خطای سنسور و سنسور، شناسایی خطا، انزوا و برآورد، سیستم های زمان گسسته خطی،
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
چکیده انگلیسی
In this work, we propose and develop data-driven explicit state-space based fault detection, isolation and estimation filters that are directly identified and constructed from only the available system input-output (I/O) measurements and through only the estimated system Markov parameters. The proposed methodology does not involve a reduction step and does not require identification of the system extended observability matrix or its left null space. The performance of our proposed filters is directly related to and linearly dependent on the Markov parameters identification errors. The estimation filters operate with a subset of the system I/O data that is selected by the designer. It is shown that our proposed filters provide an asymptotically unbiased estimate by invoking a low order filter as long as the selected subsystem has a stable inverse. We have derived the estimation error dynamics in terms of the Markov parameters identification errors and have shown that they can be directly synthesized from the healthy system I/O data. Consequently, our proposed methodology ensures that the estimation errors can be effectively compensated for. Finally, we have provided several illustrative case study simulations that demonstrate and confirm the merits of our proposed schemes as compared to methodologies that are available in the literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 85, November 2017, Pages 165-178
نویسندگان
, ,