کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4999672 | 1460630 | 2017 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A nonparametric kernel-based approach to Hammerstein system identification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Hammerstein systems are the series composition of a static nonlinear function and a linear dynamic system. In this work, we propose a nonparametric method for the identification of Hammerstein systems. We adopt a kernel-based approach to model the two components of the system. In particular, we model the nonlinear function and the impulse response of the linear block as Gaussian processes with suitable kernels. The kernels can be chosen to encode prior information about the nonlinear function and the system. Following the empirical Bayes approach, we estimate the posterior mean of the impulse response using estimates of the nonlinear function, of the hyperparameters, and of the noise variance. These estimates are found by maximizing the marginal likelihood of the data. This maximization problem is solved using an iterative scheme based on the expectation-conditional maximization, which is a variation of the standard expectation-maximization method for solving maximum-likelihood problems. We show the effectiveness of the proposed identification scheme in some simulation experiments.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 85, November 2017, Pages 234-247
Journal: Automatica - Volume 85, November 2017, Pages 234-247
نویسندگان
Riccardo Sven Risuleo, Giulio Bottegal, HÃ¥kan Hjalmarsson,