کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4999804 1460634 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive neural dynamic surface control of strict-feedback nonlinear systems with full state constraints and unmodeled dynamics
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Adaptive neural dynamic surface control of strict-feedback nonlinear systems with full state constraints and unmodeled dynamics
چکیده انگلیسی
In this paper, the problem of adaptive neural network (NN) dynamic surface control (DSC) is discussed for a class of strict-feedback nonlinear systems with full state constraints and unmodeled dynamics. By introducing a one to one nonlinear mapping, the strict-feedback system with full state constraints is transformed into a novel pure-feedback system without state constraints. Radial basis function (RBF) neural networks (NNs) are used to approximate unknown nonlinear continuous functions. Unmodeled dynamics is dealt with by introducing a dynamical signal. Using modified DSC and introducing integral-type Lyapunov function, adaptive NN DSC is developed. Using Young's inequality, only one parameter is adjusted at each recursive step in the design. It is shown that all the signals in the closed-loop system are semi-global uniform ultimate boundedness (SGUUB), and the full state constraints are not violated. Simulation results are provided to verify the effectiveness of the proposed approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 81, July 2017, Pages 232-239
نویسندگان
, , ,