کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4999937 1460642 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive stabilization of parameter-affine minimum-phase plants under Lipschitz uncertainty
ترجمه فارسی عنوان
تثبیت سازگاری از گیاهان کم فاز پارامتر وابسته به عدم قطعیت لیپچیتز
کلمات کلیدی
کنترل انعطاف پذیر، کنترل قوی، شناسایی، عدم قطعیت، اختلال محدود، اعتبار مدل،
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
چکیده انگلیسی
The maximum capability of feedback control for discrete-time systems under a nonparametric Lipschitz uncertainty was first established in Xie and Guo (2000) for the simplest dynamical control system. It was shown that the necessary and sufficient condition for the adaptive stabilizability is of the form L<32+2, where L is the Lipschitz constant of the uncertainty. This result was extended in Huang and Guo (2012) to a basic class of scalar discrete-time minimum-phase control systems under an additional parametric uncertainty, and the adaptive stabilization was achieved with the use of an impracticable infinite memory feedback based on a brute-force search over a sufficiently fine grid in the prior set of unknown parameters. In the present paper, the adaptive stabilization problem is considered for a subclass of parameter-affine minimum-phase systems. The solution of the problem is based on new recurrent objective inequalities enabling to estimate and validate the closed loop system online and to formulate a simple projection-type parameter estimation algorithm instead of the brute-force search used in Huang and Guo (2012). The computational tractability of the proposed finite-memory stabilizing feedback is illustrated via simulations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 73, November 2016, Pages 64-70
نویسندگان
,