کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5002302 1368452 2016 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Notions and Sufficient Conditions for Pointwise Asymptotic Stability in Hybrid Systems*
ترجمه فارسی عنوان
مفاهیم و شرایط مناسب برای ثبات نسبیت نقطه ای در سیستم های ترکیبی *
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
چکیده انگلیسی
Pointwise asymptotic stability is a property of a set of equilibria of a dynamical system, where every equilibrium is Lyapunov stable and every solution converges to some equilibrium. Hybrid systems are dynamical systems which combine continuous-time and discrete-time dynamics. In this paper, they are modeled by a combination of differential equations or inclusions, of difference equations or inclusions, and of constraints on the resulting motions. Sufficient conditions for pointwise asymptotic stability of a closed set are given in terms of set-valued Lyapunov functions: they require that the values of the Lyapunov function shrink along solutions. Cases of strict and weak decrease are considered. Lyapunov functions, not set-valued, which imply that solutions have finite length are used in sufficient conditions and related to the set-valued Lyapunov functions. Partial pointwise asymptotic stability is also addressed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC-PapersOnLine - Volume 49, Issue 18, 2016, Pages 140-145
نویسندگان
, ,