کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5002308 | 1368452 | 2016 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Innovation-Weight Parametrization in Data Assimilation: Formulation & Analysis with NAVDAS-AR/NAVGEM*
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
An innovation-weight parametrization is introduced as a practical approach to account for deficiencies in the representation of both background error and observation error covariance in a variational data assimilation system. The adjoint-based evaluation of the forecast error sensitivity provides a computationally efficient diagnosis to observation-space distributed parameters and guidance for tuning the analysis Kalman gain operator. Theoretical aspects are discussed and preliminary results are presented with the adjoint versions of the Naval Research Laboratory Atmospheric Variational Data Assimilation System-Accelerated Representer (NAVDAS-AR) and the Navy's Global Environmental Model (NAVGEM).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC-PapersOnLine - Volume 49, Issue 18, 2016, Pages 176-181
Journal: IFAC-PapersOnLine - Volume 49, Issue 18, 2016, Pages 176-181
نویسندگان
Dacian N. Daescu, Rolf H. Langland,