کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5002872 | 1368458 | 2016 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Electrical Load Forecasting Using An Expanded Kalman Filter Bank Methodology
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In previous work, a novel KFB24 strategy was first applied to track the key characteristics of the variable wind speed, solar irradiance and ambient air temperature in forecasting the expected wind and solar PV power output for micro-grid electrical power networks. Here, the KFB24 is expanded to a more accurate novel KFB 168 for the purpose of mapping and deriving predictions of the weekly electrical load demand profile in scheduling electrical power resources. Key results along with Statistical Hypothesis testing are presented to validate and substantiate the proposed KFB strategies and the accuracy of their prediction outputs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC-PapersOnLine - Volume 49, Issue 25, 2016, Pages 358-365
Journal: IFAC-PapersOnLine - Volume 49, Issue 25, 2016, Pages 358-365
نویسندگان
Conor Lynch, Michael J.O'Mahony, Richard A. Guinee,