کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5031100 1470938 2017 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cross-catalytic hairpin assembly-based exponential signal amplification for CRET assay with low background noise
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Cross-catalytic hairpin assembly-based exponential signal amplification for CRET assay with low background noise
چکیده انگلیسی


- A cross-catalytic hairpin assembly (C-CHA) is proposed based on strand displacement reaction.
- The proposed C-CHA strategy demonstrates exponential growth kinetics.
- This system can be considered as multi-level molecular logic circuits with feedback mechanism.
- This method is readily applied to CRET biosensing of nucleic acid with low background noise.

A toehold-mediated strand displacement (TMSD)-based cross-catalytic hairpin assembly (C-CHA) is demonstrated in this study, achieving exponential amplification of nucleic acids. Functionally, this system consists of four hairpins (H1, H2, H3 and H4) and one single-stranded initiator (I). Upon the introduction of I, the first CHA reaction (CHA1) is triggered, leading to the self-assembly of hybrid H1·H2 that then initiates the second CHA reaction (CHA2) to obtain the hybrid H3·H4. Since the single-stranded region in H3·H4 is identical to I, a new CHA1 is initiated, which thus achieves cross operation of CHA1 and CHA2 and exponential growth kinetics. Interestingly, because the C-CHA performs in a cascade manner, this system can be considered as multi-level molecular logic circuits with feedback mechanism. Moreover, through incorporating G-quadruplex subunits and fluorescein isothiocyanate (FITC) in the product of H1·H2, this C-CHA is readily utilized to fabricate a chemiluminescence resonance energy transfer (CRET) biosensing platform, achieving sensitive and selective detection of DNA and microRNA in real samples. Since the high background signal induced by FITC in the absence of initiator is greatly reduced through labeling quencher in H1, the signal-to-noise ratio and detection sensitivity are improved significantly. Therefore, our proposed C-CHA protocol holds a great potential for further applications in not only building complex autonomous systems but also the development of biosensing platforms and DNA nanotechnology.

167

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biosensors and Bioelectronics - Volume 94, 15 August 2017, Pages 671-676
نویسندگان
, , , , ,