کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5032696 1471130 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Validation of a new multiscale finite element analysis approach at the distal radius
ترجمه فارسی عنوان
اعتبار سنجی روش جدید تحلیل چند بعدی عددی محدود در شعاع دیستال
کلمات کلیدی
توموگرافی کامپیوتری با وضوح بالا، ریز ساختار، چند منظوره، عنصر میکرو محدود عنصر محدود پیوسته،
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی پزشکی
چکیده انگلیسی


- A novel multiscale approach for physiologically relevant micro-FE simulations.
- Multiscale model predicted strains validated against experimentally measured data.
- Different mechanical response between physiologic and standard simulations.

High-resolution peripheral computed tomography is commonly used to evaluate mechanical behavior of the distal radius microstructure using micro-finite element (FE) modeling. However, only a 9 mm section is considered and boundary conditions (BCs) are usually simplified (platen-compression), and may not represent physiologic loading. Regardless, these methods are increasingly being used for clinical evaluations. Our goal was to develop and validate a novel multiscale solution that allows for physiologically relevant loading simulations (such as bracing during a fall), and show that mechanical behavior in the distal radius is different under platen BCs. Our approach incorporated bone microstructure together with organ-level radius geometry, by replacing matching continuum regions with micro-FE sections in user-defined regions of interest. Multiscale model predicted strains showed a strong correlation and a significant relationship with measured strains (r = 0.836, p < 0.001; slope = 0.881, intercept = −12.17 µε, p < 0.001). Interestingly, platen BC simulated strains were almost 50% lower than measured strains (r = 0.835, p < 0.001), and strain distributions were clearly different. Our multiscale method demonstrated excellent potential as a computationally efficient alternative for observing true mechanical environment within distal radius microstructure under physiologically accurate loading.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Medical Engineering & Physics - Volume 44, June 2017, Pages 16-24
نویسندگان
, ,