کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5032780 1369996 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Reducing temperature elevation of robotic bone drilling
ترجمه فارسی عنوان
کاهش درجه حرارت حفاری استخوان رباتیک
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی پزشکی
چکیده انگلیسی


• Custom designed state of the art experimental setup to measure temperature elevations, forces and torques at any drilling depth.
• Extensive experimental study of bone drilling which focuses on the influence of irrigation, interval drilling and drill bit design on the temperature elevation.
• A new drill bit was developed which significantly decreases temperature elevations compared to a standard drill bit.
• Tissue damage is evaluated for different drilling strategies using cumulative equivalent minutes.
• An optimized drilling process which prevents tissues damage has been found and reasons for excessive temperature rise are given.

This research work aims at reducing temperature elevation of bone drilling. An extensive experimental study was conducted which focused on the investigation of three main measures to reduce the temperature elevation as used in industry: irrigation, interval drilling and drill bit designs. Different external irrigation rates (0 ml/min, 15 ml/min, 30 ml/min), continuously drilled interval lengths (2 mm, 1 mm, 0.5 mm) as well as two drill bit designs were tested. A custom single flute drill bit was designed with a higher rake angle and smaller chisel edge to generate less heat compared to a standard surgical drill bit. A new experimental setup was developed to measure drilling forces and torques as well as the 2D temperature field at any depth using a high resolution thermal camera. The results show that external irrigation is a main factor to reduce temperature elevation due not primarily to its effect on cooling but rather due to the prevention of drill bit clogging. During drilling, the build up of bone material in the drill bit flutes result in excessive temperatures due to an increase in thrust forces and torques. Drilling in intervals allows the removal of bone chips and cleaning of flutes when the drill bit is extracted as well as cooling of the bone in-between intervals which limits the accumulation of heat. However, reducing the length of the drilled interval was found only to be beneficial for temperature reduction using the newly designed drill bit due to the improved cutting geometry. To evaluate possible tissue damage caused by the generated heat increase, cumulative equivalent minutes (CEM43) were calculated and it was found that the combination of small interval length (0.5 mm), high irrigation rate (30 ml/min) and the newly designed drill bit was the only parameter combination which allowed drilling below the time-thermal threshold for tissue damage. In conclusion, an optimized drilling method has been found which might also enable drilling in more delicate procedures such as that performed during minimally invasive robotic cochlear implantation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Medical Engineering & Physics - Volume 38, Issue 12, December 2016, Pages 1495–1504