کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5088418 1375557 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Linear programming-based estimators in nonnegative autoregression
ترجمه فارسی عنوان
برآوردگرهای مبتنی بر برنامه نویسی خطی در خودکارآمدی غیرمنفی
موضوعات مرتبط
علوم انسانی و اجتماعی اقتصاد، اقتصادسنجی و امور مالی اقتصاد و اقتصادسنجی
چکیده انگلیسی

This note studies robust estimation of the autoregressive (AR) parameter in a nonlinear, nonnegative AR model driven by nonnegative errors. It is shown that a linear programming estimator (LPE), considered by Nielsen and Shephard (2003) among others, remains consistent under severe model misspecification. Consequently, the LPE can be used to test for, and seek sources of, misspecification when a pure autoregression cannot satisfactorily describe the data generating process, and to isolate certain trend, seasonal or cyclical components. Simple and quite general conditions under which the LPE is strongly consistent in the presence of serially dependent, non-identically distributed or otherwise misspecified errors are given, and a brief review of the literature on LP-based estimators in nonnegative autoregression is presented. Finite-sample properties of the LPE are investigated in an extensive simulation study covering a wide range of model misspecifications. A small scale empirical study, employing a volatility proxy to model and forecast latent daily return volatility of three major stock market indexes, illustrates the potential usefulness of the LPE.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Banking & Finance - Volume 61, Supplement 2, December 2015, Pages S225-S234
نویسندگان
,